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ABSTRACT 

 
Diabetic retinopathy (DR), a highly specific vascular complication caused by diabetes, has been found a major cause of 

blindness in the world. Early screening of DR is crucial for prevention of vision loss. Hard exudates (HEs) is one of the 

main manifestations of DR, which is characterized by hyper-reflective foci (HF) in retinal optical coherence 

tomography(OCT) images. In this paper, a fully automated method based on U-shape network is proposed to segment HF 

in retinal OCT images. Compared with the original U-Net, there are two main improvements in the proposed network:(1) 

The ordinary 3×3 convolution is replaced by multi-scale convolution based on dilated convolution, which can achieve 

adaptive receptive fields of the images. (2) In order to ignore irrelevant information and focus on key information in the 

channels, the channel attention module is embedded in the model. A dataset consisting of 112 2D OCT B-scan images 

was used to evaluate the proposed U-shape network for HF segmentation with 4-fold cross validation. The mean and 

standard deviation of Dice similarity coefficient, recall and precision are 73.26±2.03%, 75.71±1.98% and 74.28±
2.67%, respectively. The experimental results show the effectiveness of the proposed method.  
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1. INTRODUCTION 
Many studies have focused on hard exudates (HEs) segmentation in retinal fundus images, such as k-means based 

segmentation1, thresholding based segmentation2. However, fundus image only provides two-dimensional information 

about the HEs. Because of the density and opacity, HEs are also distinguishable in retinal optical coherence tomography 

(OCT) images as hyper-reflective foci (HF), which can provide the three-dimensional information of HF such as shape, 

extent and spatial distribution. There is a strong positive correlation between HEs and HF in OCT images (Matthews 

correlation coefficient between HEs and HF is 0.943). So automated segmentation of HF in OCT images is of great 

importance.  

As is shown in Fig.1, the main characteristic of HF is that their intensity values are larger than the surrounding area. The 

main challenges for HF segmentation include the various sizes, irregular shapes and blurred boundaries. Moreover, the 

volume proportion between background and HF is very large, which causes the common and difficult class imbalance 

problem in medical image segmentation.  

To the best knowledge of us, only reference [3] proposed a deep learning based method to segment HF in OCT images, 

which combines GoogleNet4 and ResNet5. In this paper, we propose an improved U-shape network for HF segmentation  

in OCT images, which achieves good performances. We use a four-layer U-Net6 model as the baseline. To deal with the 

problem of the varying sizes of objects, we propose multi-scale convolution modules (MSCM) and insert them into the 

encoder path, which can help the network achieve adaptive receptive fields. In order to guide the model to pay more 

attention to useful information in the channels, we add channel attention module (CAM) after each max-pooling and the 

result shows a great improvement compared with the baseline. Last but not least, we adopt data augmentation strategies, 

including random flips, random rotations, and Gaussian noise addition during training process, to increase the 

generalization of the model. 
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                         (a)                                               (b) 
Fig.1. Example of HF in retinal OCT image. (a) An original B-scan of retinal OCT image with HF (areas enclosed by a green 

rectangle). (b) The corresponding ground truth of HF. 

 

 

2. METHODS 

 
In this section the proposed method is introduced including the five parts: overall structure of the network, multi-scale 

convolution module, channel attention module, data augmentation strategy and loss function. 

 

2.1 Overall structure of the network 

 

U-Net6, which consists of a contracting path to capture context and a symmetric expanding path that enables precise 

localization, is widely used in medical image segmentation. In this paper, an improved U-shape network is proposed for 

HF segmentation in retinal OCT images. Fig.2 (a) shows the overall structure of the proposed method. As can be seen 

from Fig.1, the sizes of HF vary greatly, which requires the segmentation network to self-regularize the different receptive 

fields. To achieve this goal, improved multi-scale convolution modules (MSCM) are designed and inserted into the 

encoder path of the network, which is shown in Fig.2 (b). Moreover, after multiple feature extractions in the encoder path, 

there will be a lot of irrelevant information in channels. In order to guide the model to focus on useful channel information, 

two channel attention modules (CAM) are added to the bottom two max-pooling layers, which is shown in Fig.2 (c). 

 

2.2 Multi-scale convolution module with dilation convolution 

 

Considering the varying sizes of the HF, we adopt multi-scale convolution module to self-regularize the receptive fields 

of the network. The receptive fields of different branches of this structure are different, so both small targets and big ones 

can be well segmented. However, the original multi-scale structure used one 3×3 convolution, one 5×5 convolution and 

one 7×7 convolution. As is known to all, the parameters of 7×7 convolution and 5×5 convolution grow exponentially 

compared with that of 3×3 parameters. So in this paper, we propose an improved multi-scale convolution module based 

on dilated convolution7 with dilation rates of 1, 2, and 3 to achieve the same receptive fields, which is shown in Fig.2 (b). 

By this way, we can obtain multi-scale receptive fields and reduce network parameters effectively. 

 

2.3 Channel attention module 

 

Channel attention module (CAM) was first proposed by Hu et al.8. CAM was originally used for classification tasks, which 

won first place in ILSVRC9 2017. The key idea of CAM is to discard redundant information and guide the model to focus 

on the useful channel information. We adopt this idea and redesign CAM in our segmentation model as shown in Fig.2 

(c). After a global average-pooling of the input feature map, a c×1×1(c represents the channel numbers of the input) 

vector is got, in which each 1×1 point represents the global information of the corresponding channel feature map. Then 

it passes two fully connected layers in order to fit more nonlinear functions. After a sigmoid activation function, we get a 
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c×1×1 vector with element values between 0 and 1 as a channel weight. Finally, the initial input feature map is multiplied 

by this channel weight vector to get the weighted channel information. Experiments show that CAM has better effect on 

high-level semantic information, so we insert two CAMs in the bottom two encoders. 
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(b)                                         (c) 

 
Fig.2 (a) Overall structure of the network. (b) MSCM: multi-scale convolution module with dilation convolution. (c) CAM: channel 

attention module. 

 

 

2.4 Data augmentation strategy 

 

To increase the generalization of the model, we adopt online augmentation strategy including left and right flipping, up 

and down flipping, random rotation and additive Gaussian noise addition. For each round of training, 2-4 of these 

augmentation methods are used. 
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2.5 Loss function 

 

According to our statistics, the foreground (HF) only accounts for 0.3% of the whole image, which means the segmentation 

of HF is a typical data imbalance problem. To solve the data imbalance problem, a combination of binary cross-entropy 

loss and Dice loss is adopted as the loss function, which is described as: 

 

                                                                               

                                                                                               (1) 

 

 

where Yb  and Yb  denote the flatten predicted probabilities and the flatten ground truths of bth image respectively, 

and N indicates the batch size. 

 

 

3. RESULTS 

3.1 Dataset 

 

The dataset used in this paper contains 2D-images from OCT scans acquired by a Topcon Atlantis DRI-1 OCT scanner at 

1050 nm, with 20μm lateral resolution and 8μm axial resolution. The image size is 512(width of B-scans) *992(height of 

B-scans). The dataset includes 112 retinal OCT B-scan images with ground truth from 28 different patients (4 2D B-scan 

images are selected from each patient randomly), which are labeled under the supervision of a senior ophthalmologist. 

 

3.2 Parameter settings 

 

The proposed network is realized on the Pytorch10 framework. In the training process, the SGD11 algorithm with an initial 

learning rate of 0.01, momentum of 0.9 and weight decay of 0.0001 is used to optimize the network. The batch size is set 

to 2 and the number of epochs is 60. We use four-fold cross validation to evaluate the performance of the proposed method. 

Each fold includes 28 images from 7 different patients. 

 

3.3 Ablation experiment 

 
To evaluate the performance of our method, comparison experiments between the FCN12 network, the original U-Net with 

increased channels (Wide U-Net) and our improved U-shape network have been performed. More concretely, we have 

increased original U-Net’s channels by a quarter to compose Wide U-Net13, whose parameters are similar to our method 

in order to prove that the improvement of our method is not simply due to the increase of network parameters. We also 

do ablation experiments to prove the effectiveness of our proposed MSCM and CAM modules. 

 

 

3.4 Results 

 

Fig.3 shows an example of segmentation results by these 4 methods. The FCN can only distinguish the approximate 

location of the lesion area and there are many false positives and false negatives. The baseline (original U-Net) generates 

many false positives. Compared with the baseline, our method can remove more false positives in that we adopt the 

channel attention module which can discard redundant information and guide the model to focus on the useful channel 

information. Besides, the multi-scale convolution module guides the model to focus on a wider range of receptive fields. 

So our method can get a better result.  
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Fig.3 Qualitative comparison between FCN, Baseline and our method. 

 

To quantitatively evaluate the performance of the model, Dice similarity coefficient (DSC), precision and recall are used 

as the evaluation metrics. As is vividly shown in Table 1, compared with the Baseline, our improved U-shape network 

achieves remarkable improvements in DSC, Recall and Precision. The result of Wide U-Net is not good, which indicates 

that simply increasing the parameters can not achieve good performance. The performance of FCN in all of the evaluation 

metrics is bad which proves the importance of skip connections in U-shape network .The results of ablation experiments 

show that the proposed CAM and MSCM are all effective.  

 

 

Table 1: The performance of segmentation with different evaluation metrics (units:%) 

Architecture Params DSC Recall Precision 

FCN 

Baseline 

40.53M 

1.84 M 

48.59±1.59 

71.12±2.11 

58.22±1.87 

74.67±2.37 

49.73±2.32 

71.52±3.24 

Wide U-Net 2.87M 72.01±2.68 75.64±2.63 70.47±2.89 

Baseline +CAM 1.85M 72.78±2.09 74.84±2.25 73.95±2.74 

Baseline +MSCM 2.58M 72.95±1.95 74.77±2.19 74.08±2.84 

Our Methods 2.59M 73.26±2.03 75.71±1.98 74.28±2.67 
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4.CONCLUSIONS 

 
In this paper, we propose an improved U-shape network to automatically segment HF in retinal OCT images. In the 

proposed network, we introduce MSCM based on dilated convolution to obtain multi-scale receptive fields. Moreover, 

we introduce CAM to discard redundant information and guide the model to focus on the useful channel information. We 

also adopt online augmentation strategy14 to increase the generalization of the model. Binary cross-entropy loss and Dice 

coefficient loss are effectively combined to constraint the model. As a result, our methods achieve the best result in DSC, 

recall and precision, compared with FCN and original U-Net. The experimental results demonstrate the effectiveness and 

practicability of the method, which may provide great help to the ophthalmologists in diagnosis of HEs. 
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